Consistency , stability , a priori and a posteriorierrors for Petrov - Galerkin methodsapplied
نویسنده
چکیده
In an abstract framework we present a formalism which speciies the notions of consistency and stability of Petrov-Galerkin methods used to approximate nonlinear problems which are, in many practical situations, strongly nonlinear elliptic problems. This formalism gives rise to a priori and a posteriori error estimates which can be used for the reenement of the mesh in adaptive nite element methods applied to elliptic nonlinear problems. This theory is illustrated with the example: ?div (k(u)ru) + c ru = f in a two dimensional domain with Dirichlet boundary conditions.
منابع مشابه
Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملExistence of solution and solving the integro-differential equations system by the multi-wavelet Petrov-Galerkin method
In this paper, we discuss about existence of solution for integro-differential system and then we solve it by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality is one of the properties of Alpert multi-wavelet which helps us to reduce computations in ...
متن کاملThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
متن کاملMeshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications
Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...
متن کاملDiscretization of the hydrostatic Stokes system by stabilized finite elements of equal order
This work addresses stabilized equal-order finite elements for the hydrostatic approximation of the three-dimensional (3D) Stokes equations which is also called 2.5D Stokes problem. By defining appropriate averaging operators, several stabilized schemes for the two-dimensional (2D) Stokes problem can be generalized to this 2.5D problem, as e.g. pressure stabilized Petrov-Galerkin, local project...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994